Inconsistencies in the Learning
of Calculus and Analysis

David Tall

University of Warwick
U.K.

Introduction

In the mid-seventies, as Becturer in mathematics rather than a researcher in
mathematiceducation, | firstoecameconcerned withthe cognitive difficulties of
students learning the calculus and analysis. At that time | believed, in common with
other professional mathematiciatisat thebest way tchelp students is to present

the materials in a logical and coherent manner. By preparing my lectures in this way
| obtained the approval dboth colleagues andtudents.The acid test of peer
evaluation and consumer satisfaction gave this approach an extremely high rating.

But exploratory investigations intstudents’ conceptionsevealed fundamental
inadequacies. Studentsarn torespond to standard questions inpiedictable
manner, but iftheir understanding iprobed in unusualvays, subtle difficulties
arise. Weall see concepts throughe rose-tinted spectacles air experience and
this colours our beliefs. Students brimge-mathematical experiences into the
classroom whichaffect their understanding ofthe mathematics. And the
mathematics itself, though formalized into a coherent dedusystem is based on
implicit and explicit agreements between mathematiciartsch are notalways
totally consistent and may cause further difficulties.

In this paper | shall look at some ke reasons behinthe inconsistencies in the
learning of calculus and analysis based on my own research over the last decade and
a half. It is helpful to focus on three different argas:mind, the mathematics, and

the message:
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The mind of the studenfand also ofthe teacher angrofessionalmathematician)
with its idiosyncratic experiences abeliefs, and personalays of building and
testing ideas.

The mathematics as developed and shared betw#enminds of mathematicians

and practioners over the centuries - a shared theory that has the advantage over other
theories that there arestrong deductive relationships and coherences between
concepts, nevertheless a theory thatbeief structures (bottexplicit andimplicit)

about the nature dhose concepts arttle allowableways in whichthey may be

related.

The messageof mathematics as conveyeddtudents by teachers, textbooks and
other mediaWithin the message ate/o important subcategories whicould be
emphasized: these of languageand thesequence of presentation of ideas

Inconsistencies can arise in all of these:

(1) The minds of students,teachers andmathematicians have
experiences and belistructuresthat arenot always consistent
and may assemble mathematical ideas in idiosyncratic ways,

(2) The mathematicscontains concepts such it and infinity,
which carry complex meaningghat may be interpreted in
inconsistent ways,

(3) The messagemay be framed in alanguage that evokes
inappropriate ideas and may be presented secquencehat is
inappropriate for cognitive development.

These differenstrandsare woventogether in a compleweb. A growing body of
research haknked togetheil1) and(2), throughthe theory of conceptnage and
concept definition (Tall & Vinned981) andmore recent researdtasconcentrated
on addressinghe problems of language and curriculum sequendisge, for
example, Tall 1986a).

The mind: inconsistencies identified in research

In Tall (1977) the results of the an investigation into students’ beliefs were reported,
based on writtemesponses to questionnaires byapulation of 36mathematics
students in their first week of study at university.
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One item made the request:

If you know the definition of the limit of a sequence, write it down: sp - S
as n - oo means:

A later one asked:

Is0-9 (nought point nine recurring) equal to one, or is it just less than
one? Explain the reason behind your answer.

Only 100out of 36 studentslaimed toknow aprecise definition and only seven
were able to formulate a definition thatas mathematicallyacceptable. Of these
seven, onlyoneresponded that 0-91.

Thirteen of the thirtysix held apparently conflictingiews, assertinghat 0-9 was
less than 1, whilst elsewhere stating that

. 9 9 9
nlmo (I4wtzt...+5) = 2.

A week later thestudents were asked to wrilewn variousdecimals adractions,
including

0-25

0-05

0-3

0-333...

0-9 =0-999...

Two thirds ofthe students (24) now saithat 0:9=1 (or 1/1),including 13 who
had previously affirmed the result was less. Their written answers also exhibited the
conflict in terms of crossings out and added comments.

Subsequent research by one of Rty.D. studentsMonaghan(1986), working

with 16/17 year-olds studyinthe calculus, showedhat “recurring decimals are
perceived asdynamic, not staticentities and are ngbroper numbers. Similar
attitudes existtowards infinitesimals when they areseen to exist”. Comparing
students taking a calculus course with students of a similar akfiibywere not, he
concluded that “the first year of a calculus course has a negligible effect on students’
conceptions of limits, infinity and real numbers”.

During thelate seventies and early eighties many examplesuach conflicts were
notedacross a wideange oftopics, including secants tending to tangents (Orton
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1977),verbal and other difficulties with decimalall 1977), real numbers and
limits (Schwarzenberger and@iall 1978, Tall 1980b, Cornu 1981)geometrical
concepts (Vinner &Hershkowitz, 1980)the notion of function (Vinnerl983,
Sierpinska 1985a, 1988)imits and continuity(Tall & Vinner 1981, Sierpin ska
1987), convergence of sequences (RohkE®82), limits of functions (Ervynck,
1981) the tangent (Vinner 1983, Tall 1987), the intuition of infinity (Fischbein et al
1979, Tall 1980c, 1981,Sierpin ska 1987),infinitesimals (Tall 1980a, 1981,
Cornu 1983), the meaning of the differential (Artigue 1986), and so on.

The mathematics : different mathematical paradigms

As a mathematician had alwayselieved in the universal truth of tieathematics
that | had learned and went on teachstudents. ltame asomething of a brutal
shock to realize that, whilst there was a considerable proportion of dedndtion
and reasoning there arealso arbitrarybelief structuresthat give mathematics a
relative rather than an absolute truth. The Greek dichotomy betineeand space
being either made up ohdivisibles or being potentially infinitely divisibletill
remains in our culture today. Standard mathematics banished infinitesimals with the
arithmetization ofanalysis inthe second half ofthe nineteenthcentury, but
infinitesimal conceptions remain deeply embedded inntlaéhematicapsyche so
that apopular Encyclopaedia of Mathematics, (Westakt 1982)can describe
calculus as:

... a branch of higher mathematics that deals with variable, or changing,

guantities ... based on the concept of infinitesimals (exceedingly small

guantities) and on the concept of limits (quantities that can be
approached more and more closely but never reached).

Thework of Robinson (1966y§ave a logicabasis forthe notion of infinitesimal
but, instead of bringing about a revolution in which infinitesimals weoepted as
Robinson hoped, it wasesisted bythe mathematical communityhich largely
continued to use standard methods. Yet, embedded iteaching of epsilon-delta
analysisarenotions of“arbitrarily small” quantitieswhich Cornu (1983showed
were causing students to have beliefs in infinitesimals.

The child is the father of thean. The studentwith infinitesimal notions passes
through a training in standaehalysis,but conceptions of the infinitely small are
merely supressednot eradicated, aniie there, dormantready to be evoked at a
later time.
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Concept image and concept definition

The distinction between the ideas related to a concept as evoked in the mind and the
form of words used to (attempt to) define the concept is the focus of attentialh in
& Vinner (1981). The phenomena are here interpreted in terms of the theory of
concept imagandconcept definitiondefined as follows:

We shall use the term concept image to describe the total cognitive

structure that is associated with the concept, which includes all the mental

pictures and associated properties and processes. ... As the concept

image develops it need not be coherent at all times. ... We shall the

portion of the concept image which is activated at a particular time the

evoked concept image. At different times, seemingly conflicting images

may be evoked. Only when conflicting aspects are evoked
simultaneously need there be any actual sense of conflict or confusion.

On the other hand:

The concept definition [is] a form of words used to specify that concept.
(Tall & Vinner 1981, page 152)

The paperconsidersthe curriculum studiecearlier by pupils in anattempt to
postulatereasons fothe mismatch betweestudents’ evokedoncept images and
their knowledge of concept definitions tiits of sequenceslimits of functions

and continuity.For examplethe students had aoncept image of @&ontinuous
function, whichcould have comdrom a variety ofsources,not least being the
colloguial meaning of the term phrases such dg rained continuoushall day”
(meaning there was no break in tilaénfall). This viewpoint is often reinforced by
teacher’s attempts to give a simple insight into the notion of continuity by speaking
of the graph “being in one piece” or “drawn without taking the pencil off the paper”,
thereby confusing the mathematical notions of continuity and connectedness.

A guestionnaire administered to 41 first year univensigthematicstudents(Tall
& Vinner 1981) included the question to investigatide students’concept images
(figure 1).
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Which of the

following
functions are

continuous? _ 0(x <0)
f@()- { X (x =0)

/|

W4

If possible,
give reason for
your answer.

_ 0(x <0) e
T = { 1 (x>0)

0 (rational)

f%() - { 1 (irrational)

Figure 1 : the concept image of continuity

Mathematically {, fo and g are continuous, whilst 4 and § are not. But the
students’ concept imageasiggest otherwis€rable 1 — “correcttesponses ibold
print).

N=41 f1 fo f3 fa f5
continuous 41 6 27 1 8
discontinuous 0 35 12 38 26
no response 0 0 2 2 7

Table 1

Although all theresponses to; fare “correct”, the majority are “rigranswers for
wrong reasons”, such as tliea that f is continuous “because it is given by only

one formula”. The function $ often causes dispute even amongst seasoned
mathematicians. It is continuous accordingthe €-& definition on the domain

{xOIR | x£0}. But the students’ concept images suggest:

It is continuous:
because *“the function is given by a single formula”

It is not continuous
because “the graph is not in one piece”
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“the function is not defined at the origin”
“the function gets infinite at the origin”.

Thus we see the concept image being evoked to respdhe qaestion rathethan
the concept definition, leading to inconsistent responses.

It is possible for students tgive apparently correatesponseshaving evoked
incorrect concepimages, or togive glaringingly incorrectresponses fosubtle
reasonghat have a largportion of truth inthem. Tall (1986a) asked students to
respond in writing whether they thought the statement in figure 2 is true or false.

As B - Atheline

through AB tends B
to the tangent AT.

True/False ? .....

Figure 2 : tending to the tangent

Of a sample of nine 16 year adtlidents interviewed in dep(as part of a larger
project), four saidhe statementvas "true” but linked thesymbol B- A to vector
notation and visualized B as moving to afong the line BA so that the line
(segment) BA “tends” to theéangent. Meanwhile, one student considered the
statement “falsefor the sensible reasothat the linesvereinfinite so, way off at
infinity, the line AB and tangent AT were still a long way apartnmatterhow close

A and B became : an “incorrecttesponse for a very sensible reason. tis
reason questionnaires alone, without follow-up intervieney not reveal the full
story.

The message: linguistic considerations

It is clearfrom what hasalready been saithat languageplays alarge part in
carrying boththe meaning and evoking concept images may be inappropriate
and cause conflict. In &ecent investigation ksked sixteen year old pupils to
explain what a function is. The responses included the following:
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. An equation with a variable factor — tells us whappens to a
variable factor. e.g. f(x)=x+2.

. A process whichcan be performed on any number and is
represented in algebraic form using x as a variable.

. An order which plots a curve or straight line on a graph.

J A series of calculations to determine a final answer.
. A term by which a sequence of numbers can be written and values
calculated.

. A set of instructions that you can put numbers through.

Notice the many uses of technical mathematical terms in contexts where they have a
colloquial rather than a technical meaningariable, factor, order, series, term,
sequence, set ...

It is quite clearlyimpossible toparticipate in human communicatievithout such
colloquiallisms. Thughe teacher, speaking tihe student mayise wordswith a
technical meaningvhich the studentsnterpret with a different colloquiaheaning,
or may use wordsolloquially in a mannewhich cloudsthe technicameaning. In
my own teaching | have been made cruelly awaretlié phenomenon. For
example, | could not understand where my studebtained the idea that “a
constant function is not really a function” — they consideyed “not to be a
function of x because there was no x in the equation”. lquéts certain that | had
never saicsuch a thingyet on another occasionféund myself writingthat the
solution of a differential equation dy/dx=F(x,y) would have solutions differing by a
constant “if the right-handide is a function of x alone, amdt a function of ¥
(The italics are here addéor emphasis.) In different mathematical context | had
evoked the very concept | considered to be incorrect .

The message: curriculum sequencing

The sequencing of topics in tmeathematics curriculum is builtpon the implicit
assumptiorthat simple ideasust be introduced before motemplicatedones —
after all, this principle is so obvious, it is self-evident. But4sTheimplications in
the teaching of calculus might be tlmate should firsexperience calculus concepts
with simple functions — polynomials and trigonometric functions — bdéading
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on to more complicateflinctions such as those whiahe everywhereontinuous
and nowhere differentiable. This is certainly the way in which it is currently taught.

But this leads tall sorts ofincorrect or inadequate beliefghich are common not
only in students but also imany teachers: that fnction must be given by a
formula (and only one formula igllowed), that everyfunction is differentiable,
exceptpossibly at a fewsolated points, that thegraph of a function lookgairly
smooth with reasonably shapedaxima and minima,that graphs alwayshave
tangentsthat a tangeniouches the curve at one poaorily and does natross the
graph, etc etc.

It is my belief that we do students a disservice by organteegurriculum sdhat

they are presented only with simple ideas first and given too great an exposure to an
environment which contains regularities that do not hold in general. Thisojust

the seeds follater cognitiveconflict. For example, doingeometry of curves only

with circles, can give adangerouslylimited idea of atangent, or studying
differentiation initially only with polynomials for so longnay causestudents to
abstract general "rules" whicire not true in avider context:for instance that at a
maximum the derivative is zero, rather tlifathe derivative existshenit is zero...

Addressing the problem of cognitive conflict in mathematics
education

We have seen a number of differesburces ofcognitive conflict: in the
idiosyncratic meaningstudents and teachergive to concepts, inthe subtle
difficulties and inconsistencies in the mathematics, and inviine we attempt to
transferthe message tstudents, throughhe ambiguities of language and the
problem of developing appropriate learnisgquences. We shoultherefore
consider how wemight addressthese problems to give teaching and learning
strategies that face squarely up to the difficulties of cognitive conflict.

From the subtle and deep manner in which the use of language is intertwined in our
thought, itbecomes clear that we cannot improve matsargply by giving better
conceptdefinitions. That was anapproach tried in thewew mathematics of the
sixtiesand, byand large, it failed. Ifailed becausevhat might be an appropriate
foundation for alogical mathematical development maypt be an appropriate
starting pointfor a cognitive development. Whilst w&hould becareful to present
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mathematics in a clear and consistent way we should not expect that the meaning we
wish to convey will automatically transfer to the students.

On thecontrary, what we must try to do is to provide students Ve#ining
experiences that will help them construct their own conicepges, in a way which
has sufficient richness to give better intuitions as to the likaths in mathematics.
Language alone cannot dbis. But the computeaffords a new resource which
allows otherforms of communicationyia dynamic processes andisualizations
which may be programmed to enalsiieidents to freely explorte concepts with
the aim of gaining a greater insight.

There aretwo possible ways otoping with conflict (which are not mutually
exclusive): one is to research the cognitive conflict to be prepared to fabernitit
occurs, a second is tve a richer conceptualizatidnom the start to reduce the
later conflict, or at least give the experience to set it in contextowtyapproach is
to design computer software to provide a rich environment in which concepts could
be demonstrated, explored andiscussed. My thesis ishat an environment
allowing theuser toexplore bothexamplesand non-example®f a mathematical
concept or process can help the user abgtraageneral properties embodied in the
examples and contrasted by then-examples. An environment designed with this
in mind is called ageneric organizerand(Tall 1986b) consists of aollection of
genericorganisers fowisualizing calculugconcepts. A newgraphic” approach to
the calculususing these organisers is described in a seriesiofarticles in
MathematicsTeaching, starting witiTall (1985a). Powerfufjeneral ideas can be
introduced at the outsésuch asdifferentiable and non-differentiable functions at
the beginning of the calculus) and specific examples with pertinent properties can be
investigated'such aghe tangent to a straighihe or at an inflectiorpoint) to help
students avoid narrow over-generalization. Six such generic organizers are:

. the magnify program: to magnify a tiny portion ofgeaph to

investigate examples and non-examples‘ocal straightness”
(i.e. examples of differentiable and non-differentiable functions).

. the gradient plottenvhich has aecant throughwo close points
on thegraph move alonghe graph, simultaneously plotting the
gradient of the secant as pmint, dynamically building up the
gradient function

—-10 -
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. the area calculator: tehow howthe areaunderthe graph of a
function may be calculated as the area of a numb&rips, or as
a cumulative area function

. the solution sketcher: to enable th&er toconstructone or more
solutions of adifferential equatiordy/dx=F(x,y) by drawing a
short line segment of gradierfE(x,y) atany point (x,y) and
building up a solution by puttinguch segments end to end to
give an approximate solution curve (figure 3).

dy-dt=8.5y

t=1.5888
Py i y=2.8888
A M dy-dt=
¢ 1.8888
MW@WW - 5, o
e,
s s s "55; s s "’xs‘ ”s‘s s
imove {(Siep tsegment
irection field 3 ) lear
unction [lange |[YJariables Hrid uit

Figure 3 : The Solution Sketcher

. the three dimensionaolution sketcher: t@show simultaneous
differential equationsdx/dt=f(x,y,t), dy/dt=g(x,y,t) follow the
same idea, with solution curves followitige directions specified
by the equations

. the parametric functiomnalyser,enabling a three-dimensional
view of parametric functions x=x(t), y=y(t) to be drawogether
with their projections ont-x, t-y and x-yspace and taraw an
approximate tangent vector and its componeitdx,dy, to see
that formulae such as

dy _dy ydx
dx‘dt/dt

are just ratios of lengths of the components of the tangent vector
(figure 4).

—-11 -



Inconsistencies in Learning Calculus David Tall

-2 -2

nput lﬁange 1r [Hraw |jar t=6

=y ltx K DEE allg! [(IRR =—8.27942
a=68o =—68o F1i1) .4 y=8.96817

ars ilechniocas Muit Wt epw ]

Figure 4 : The Parametric Function Analyser

All of these programbave been subsequently developed to abawemelynasty
functions (such asextremely wrinkled graphs to representon-differentiable
functions). Thus it is possible tmvestigate specific cases whieme far more
complicated than mere polynomials nooth combinations of standard functions
and give a much richer experience why things can “gowrong” aswell as
surprising cases whetbkey “go right” (Mills & Tall 1989). It is now possible to
illustrate ideas thdunctionsmight be non-differentiable, ahat the area function
for a continuous, nowhemdifferentiable functions differentiable, and many more
essential ideas that build experiences to give greater insight into analysis.

Computer softwarecan provide a representation or model of thathematical
phenomena, but not always exacttranslation. (For instanc@jctures aredrawn

using finite pixels, so that straight lines do not normally look straight on a computer
screen.) However, these obvious inconsistencies may be regardedcsuaiage

not a hinderance. If the student can cleségthat the representation is retact, it

is possible to discusthe reasons whyand to begin to build up richenental
models.

The evidence from a number of studies so(Tail 1986a,Blackett1987, Thomas
1988) shows that the use @éneric organizers in a contexherethe concepts are

—-12 —
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introduced by the teacher, discussed with the pupils and then explotied gupils

alone, suggestgreat advantages ovéraditional approaches.Foinstance Tall
(1986a)built a “cognitive approach to the calculugsing the magnification and
gradient drawing programs mentioned above. There was significant improvement in
the experimentastudents’ability to sketch gradients of givegraphs, and their
conceptualizations transferred to the more general case of the gradient and tangent of
a graph at a point where the function was given by different formulae on either side.

Such an approach does mditninate cognitiveconflict. How could it? It is part of

the human condition. But it does provide an open forum in which the conflict can be
brought to the fore and discussed dispassionately through shared phenomena on the
computer screen, instead of focussing on the personal hidden recesses of the pupil’s
mind. For instancethe difficulties that Vinnef1983) observed witlthe student’s
concept image of a tangent being a hvi@ch “touches a graph but does mobss

it” was attacked using a graph plotter to draw lines through close pointsuoneg
producing a close approximation to a tangent. Zooming in closthercurve
showed some graphs wefiecally straight” and the tangent andraph were
indistinguishable in the pixellated compufgcture. Discussion of this point and

what happens at points of inflection, or at a “corner” on a gleghlho a much more
flexible idea of a tangent and showed a significant change for the @etliet 987).

New conflicts arose — for instantiee students usinghe computekvere, naturally,

more likely tosaythat a tangent is a “linehrough twoclose points on a graph”
because this ithe way the conceptvas approachedisingthe computer. But such
concepts were moramenable todiscussion and personal reconstruction by the

pupils.

A new approach using computers in this wajl need a radical reform of the
curriculum. It applies all levels of developmentMuch research, based on pre-
computer environments, may be in error because it occurred in a cahiekt may
not pertain infuture. For example, wkeachyoung children about simple fractions
in terms of halving and quartering because this is within their physicainanthl
capacity. But just because they maypbgsicallyincapable of dividing a cake into
sevenequal piecesloes notmean that they anmentallyincapable of visualizing it
aided by appropriateoftware. Arich computer environment allowing children to
carry out theirmentalideas may give thepportunity to circumvent some of the
trivializing introductionsthat may stunt future growth. We cannot make the

- 13 -
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complicated concepts momple, but wecan give far richer experienceisat
enable them to beeen in awider, and morepowerful, contextRecent research
shows this to be a promising direction to follow (Tall & Thomas 1988).
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