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Introduction

In the mid-seventies, as a lecturer in mathematics rather than a researcher in

mathematics education, I first became concerned with the cognitive difficulties of

students learning the calculus and analysis. At that time I believed, in common with

other professional mathematicians, that the best way to help students is to present

the materials in a logical and coherent manner. By preparing my lectures in this way

I obtained the approval of both colleagues and students. The acid test of peer

evaluation and consumer satisfaction gave this approach an extremely high rating.

But exploratory investigations into students’ conceptions revealed fundamental

inadequacies. Students learn to respond to standard questions in a predictable

manner, but if their understanding is probed in unusual ways, subtle difficulties

arise. We all see concepts through the rose-tinted spectacles of our experience and

this colours our beliefs. Students bring pre-mathematical experiences into the

classroom which affect their understanding of the mathematics. And the

mathematics itself, though formalized into a coherent deductive system is based on

implicit and explicit agreements between mathematicians which are not always

totally consistent and may cause further difficulties.

In this paper I shall look at some of the reasons behind the inconsistencies in the

learning of calculus and analysis based on my own research over the last decade and

a half. It is helpful to focus on three different areas: the mind, the mathematics, and

the message:
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The mind of the student (and also of the teacher and professional mathematician)

with its idiosyncratic experiences and beliefs, and personal ways of building and

testing ideas.

The mathematics : as developed and shared between the minds of mathematicians

and practioners over the centuries - a shared theory that has the advantage over other

theories that there are strong deductive relationships and coherences between

concepts, nevertheless a theory that has belief structures (both explicit and implicit)

about the nature of those concepts and the allowable ways in which they may be

related.

The message: of mathematics as conveyed to students by teachers, textbooks and

other media. Within the message are two important subcategories which should be

emphasized: the use of language  and the sequence of presentation of ideas.

Inconsistencies can arise in all of these:

(1) The minds of students, teachers and mathematicians have
experiences and belief structures that are not always consistent
and may assemble mathematical ideas in idiosyncratic ways,

(2) The mathematics contains concepts such as limit and infinity,
which carry complex meanings that may be interpreted in
inconsistent ways,

(3) The message may be framed in a language that evokes
inappropriate ideas and may be presented in a sequence that is
inappropriate for cognitive development.

These different strands are woven together in a complex web. A growing body of

research has linked together (1) and (2), through the theory of concept image and

concept definition (Tall & Vinner 1981) and more recent research has concentrated

on addressing the problems of language and curriculum sequencing (see, for

example, Tall 1986a).

The mind: inconsistencies identified in research

In Tall (1977) the results of the an investigation into students’ beliefs were reported,

based on written responses to questionnaires by a population of 36 mathematics

students in their first week of study at university.
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One item made the request:

If you know the definition of the limit of a sequence, write it down: sn → s
as n → ∞ means:

A later one asked:

Is 0·9̇ (nought point nine recurring)  equal to one, or is it just less than
one? Explain the reason behind your answer.

Only 10 out of 36 students claimed to know a precise definition and only seven

were able to formulate a definition that was mathematically acceptable. Of these

seven, only one responded that 0·9˙  =1.

Thirteen of the thirty six held apparently conflicting views, asserting that 0·9˙   was

less than 1, whilst elsewhere stating that

lim
n→∞ (1+

9
10+

9

102+...+
9

10n)  = 2.

A week later the students were asked to write down various decimals as fractions,

including

0·25
0·05
0·3
0·333...
0·9̇  = 0·999...

Two thirds of the students (24) now said that 0·9˙   = 1 (or 1/1), including 13 who

had previously affirmed the result was less. Their written answers also exhibited the

conflict in terms of crossings out and added comments.

 Subsequent research by one of my Ph.D. students, Monaghan (1986), working

with 16/17 year-olds studying the calculus, showed that “recurring decimals are

perceived as dynamic, not static, entities and are not proper numbers. Similar

attitudes exist towards infinitesimals when they are seen to exist”. Comparing

students taking a calculus course with students of a similar ability who were not, he

concluded that “the first year of a calculus course has a negligible effect on students’

conceptions of limits, infinity and real numbers”.

During the late seventies and early eighties many examples of such conflicts were

noted across a wide range of topics, including secants tending to tangents (Orton
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1977), verbal and other difficulties with decimals, (Tall 1977), real numbers and

limits (Schwarzenberger and Tall 1978, Tall 1980b, Cornu 1981), geometrical

concepts (Vinner & Hershkowitz, 1980), the notion of function (Vinner 1983,

Sierpiń ska 1985a, 1988), limits and continuity (Tall & Vinner 1981, Sierpiń ska

1987), convergence of sequences (Robert 1982), limits of functions (Ervynck,

1981) the tangent (Vinner 1983, Tall 1987), the intuition of infinity (Fischbein et al

1979, Tall 1980c, 1981, Sierpiń ska 1987), infinitesimals (Tall 1980a, 1981,

Cornu 1983), the meaning of the differential (Artigue 1986),  and so on.

The mathematics : different mathematical paradigms

As a mathematician I had always believed in the universal truth of the mathematics

that I had learned and went on to teach students. It came as something of a brutal

shock to realize that, whilst there was a considerable proportion of sound deduction

and reasoning, there are also arbitrary belief structures that give mathematics a

relative rather than an absolute truth. The Greek dichotomy between time and space

being either made up of indivisibles or being potentially infinitely divisible still

remains in our culture today. Standard mathematics banished infinitesimals with the

arithmetization of analysis in the second half of the nineteenth century, but

infinitesimal conceptions remain deeply embedded in the mathematical psyche so

that a popular Encyclopaedia of Mathematics, (West et al., 1982) can describe

calculus as:

... a branch of higher mathematics that deals with variable, or changing,
quantities ... based on the concept of infinitesimals (exceedingly small
quantities) and on the concept of limits (quantities that can be
approached more and more closely but never reached).

The work of Robinson (1966) gave a logical basis for the notion of infinitesimal

but, instead of bringing about a revolution in which infinitesimals were accepted as

Robinson hoped, it was resisted by the mathematical community which largely

continued to use standard methods.  Yet, embedded in our teaching of epsilon-delta

analysis are notions of “arbitrarily small” quantities which Cornu (1983) showed

were causing students to have beliefs in infinitesimals.

The child is the father of the man. The student with infinitesimal notions passes

through a training in standard analysis, but conceptions of the infinitely small are

merely supressed, not eradicated, and lie there, dormant, ready to be evoked at a

later time.
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Concept image and concept definition

The distinction between the ideas related to a concept as evoked in the mind and the

form of words used to (attempt to) define the concept is the focus of attention in Tall

& Vinner (1981). The phenomena are here interpreted in terms of the theory of

concept image and concept definition, defined as follows:

We shall use the term concept image to describe the total cognitive
structure that is associated with the concept, which includes all the mental
pictures and associated properties and processes. ... As the concept
image develops it need not be coherent at all times. ... We shall the
portion of the concept image which is activated at a particular time the
evoked concept image. At different times, seemingly conflicting images
may be evoked. Only when conflicting aspects are evoked
simultaneously need there be any actual sense of conflict or confusion.

On the other hand:

The concept definition [is] a form of words used to specify that concept.
(Tall & Vinner 1981, page 152)

The paper considers the curriculum studied earlier by pupils in an attempt to

postulate reasons for the mismatch between students’ evoked concept images and

their knowledge of concept definitions of limits of sequences, limits of functions

and continuity. For example, the students had a concept image of a continuous

function, which could have come from a variety of sources, not least being the

colloquial meaning of the term in phrases such as “it rained continuously all day”

(meaning there was no break in the rainfall). This viewpoint is often reinforced by

teacher’s attempts to give a simple insight into the notion of continuity by speaking

of the graph “being in one piece” or “drawn without taking the pencil off the paper”,

thereby confusing the mathematical notions of continuity and connectedness.

A questionnaire administered to 41 first year university mathematics students (Tall

& Vinner 1981) included the a question to investigate the students’ concept images

(figure 1).
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f (x) = 1/x (x ≠0)2

f (x) = x 2
1

f (x) = {  0 (x ≤0)
3 x (x ≥0)

f (x) = {  0 (x ≤0)
4 1 (x>0)

f (x) = {
 0 (rational)

5 1 (irrational)

Which of the 
following 
functions are 
continuous?

If possible, 
give reason for 
your answer.

Figure 1 : the concept image of continuity

Mathematically f1, f2 and f3 are continuous, whilst f4 and f5 are not. But the

students’ concept images suggest otherwise (Table 1 – “correct” responses in bold

print).

 N=41 f1 f2 f3 f4 f5
continuous 4 1 6 2 7 1 8
discontinuous 0 35 12 3 8 2 6
no response 0 0 2 2 7

Table 1

Although all the responses to f1 are “correct”, the majority are “right answers for

wrong reasons”, such as the idea that f1 is continuous “because it is given by only

one formula”. The function f2 often causes dispute even amongst seasoned
mathematicians. It is continuous according to the ε−δ definition on the domain

{x ∈ I R  | x≠0}. But the students’ concept images suggest:

It is continuous:
because “the function is given by a single formula”

It is not continuous
because “the graph is not in one piece”
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“the function is not defined at the origin”
“the function gets infinite at the origin”.

Thus we see the concept image being evoked to respond to the question rather than

the concept definition, leading to inconsistent responses.

It is possible for students to give apparently correct responses having evoked

incorrect concept images, or to give glaringingly incorrect responses for subtle

reasons that have a large portion of truth in them. Tall (1986a) asked students to

respond in writing whether they thought the statement in figure 2 is true or false.

A

T

B

As B →A the line 

through AB tends 
to the tangent AT.

True/False ? .....

Figure 2 : tending to the tangent

Of a sample of nine 16 year old students interviewed in depth (as part of a larger
project), four said the statement was ”true“ but linked the symbol B→A to vector

notation and visualized B as moving to A along the line BA, so that the line

(segment) BA “tends” to the tangent. Meanwhile, one student considered the

statement “false” for the sensible reason that the lines were infinite so, way off at

infinity, the line AB and tangent AT were still a long way apart no matter how close

A and B became : an “incorrect” response for a very sensible reason. For this

reason questionnaires alone, without follow-up interviews, may not reveal the full

story.

The message: linguistic considerations

It is clear from what has already been said that language plays a large part in

carrying both the meaning and evoking concept images that may be inappropriate

and cause conflict. In a recent investigation I asked sixteen year old pupils to

explain what a function is. The responses included the following:
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• An equation with a variable factor – tells us what happens to a
variable factor. e.g. f(x)=x+2.

• A process which can be performed on any number and is
represented in algebraic form using x as a variable.

• An order which plots a curve or straight line on a graph.

• A series of calculations to determine a final answer.

• A term by which a sequence of numbers can be written and values
calculated.

 • A set of instructions that you can put numbers through.

Notice the many uses of technical mathematical terms in contexts where they have a

colloquial rather than a technical meaning : variable, factor, order, series, term,

sequence, set ...

It is quite clearly impossible to participate in human communication without such

colloquiallisms. Thus the teacher, speaking to the student may use words with a

technical meaning which the students interpret with a different colloquial meaning,

or may use words colloquially in a manner which clouds the technical meaning. In

my own teaching I have been made cruelly aware of this phenomenon. For

example, I could not understand where my students obtained the idea that “a

constant function is not really a function” – they considered y=4 “not to be a

function of x because there was no x in the equation”. I was quite certain that I had

never said such a thing, yet on another occasion I found myself writing that the

solution of a differential equation dy/dx=F(x,y) would have solutions differing by a

constant “if the right-hand side is a function of x alone, and not a function of y”.

(The italics are here added for emphasis.) In a different mathematical context I had

evoked the very concept I considered to be incorrect .

The message: curriculum sequencing

The sequencing of topics in the mathematics curriculum is built upon the implicit

assumption that simple ideas must be introduced before more complicated ones –

after all, this principle is so obvious, it is self-evident. But is it? The implications in

the teaching of calculus might be that one should first experience calculus concepts

with simple functions – polynomials and trigonometric functions – before leading
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on to more complicated functions such as those which are everywhere continuous

and nowhere differentiable. This is certainly the way in which it is currently taught.

But this leads to all sorts of incorrect or inadequate beliefs which are common not

only in students but also in many teachers: that a function must be given by a

formula (and only one formula is allowed), that every function is differentiable,

except possibly at a few isolated points, that the graph of a function looks fairly

smooth with reasonably shaped maxima and minima, that graphs always have

tangents, that a tangent touches the curve at one point only and does not cross the

graph, etc etc.

It is my belief that we do students a disservice by organising the curriculum so that

they are presented only with simple ideas first and given too great an exposure to an

environment which contains regularities that do not hold in general. This just sows

the seeds for later cognitive conflict. For example, doing geometry of curves only

with circles, can give a dangerously limited idea of a tangent, or studying

differentiation initially only with polynomials for so long may cause students to

abstract general ”rules“ which are not true in a wider context: for instance that at a

maximum the derivative is zero, rather than if the derivative exists, then it is zero...

Addressing the problem of cognitive conflict in mathematics

education

We have seen a number of different sources of cognitive conflict: in the

idiosyncratic meaning students and teachers give to concepts, in the subtle

difficulties and inconsistencies in the mathematics, and in the way we attempt to

transfer the message to students, through the ambiguities of language and the

problem of developing appropriate learning sequences. We should therefore

consider how we might address these problems to give teaching and learning

strategies that face squarely up to the difficulties of cognitive conflict.

From the subtle and deep manner in which the use of language is intertwined in our

thought, it becomes clear that we cannot improve matters simply by giving better

concept definitions. That was an approach tried in the new mathematics of the

sixties and, by and large, it failed. It failed because what might be an appropriate

foundation for a logical mathematical development may not be an appropriate

starting point for a cognitive development. Whilst we should be careful to present
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mathematics in a clear and consistent way we should not expect that the meaning we

wish to convey will automatically transfer to the students.

On the contrary, what we must try to do is to provide students with learning

experiences that will help them construct their own concept images, in a way which

has sufficient richness to give better intuitions as to the likely truths in mathematics.

Language alone cannot do this. But the computer affords a new resource which

allows other forms of communication, via dynamic processes and visualizations

which may be programmed to enable students to freely explore the concepts with

the aim of gaining a greater insight.

There are two possible ways of coping with conflict (which are not mutually

exclusive): one is to research the cognitive conflict to be prepared to face it when it

occurs, a second is to give a richer conceptualization from the start to reduce the

later conflict, or at least give the experience to set it in context. My own approach is

to design computer software to provide a rich environment in which concepts could

be demonstrated, explored and discussed. My thesis is that an environment

allowing the user to explore both examples and non-examples of a mathematical

concept or process can help the user abstract the general properties embodied in the

examples and contrasted by the non-examples. An environment designed with this

in mind is called a generic organizer, and (Tall 1986b) consists of a collection of

generic organisers for visualizing calculus concepts. A new “graphic” approach to

the calculus using these organisers is described in a series of six articles in

Mathematics Teaching, starting with Tall (1985a). Powerful general ideas can be

introduced at the outset (such as differentiable and non-differentiable functions at

the beginning of the calculus) and specific examples with pertinent properties can be

investigated (such as the tangent to a straight line or at an inflection point) to help

students avoid narrow over-generalization. Six such generic organizers are:

• the magnify program: to magnify a tiny portion of a graph to
investigate examples and non-examples of “local straightness”
(i.e. examples of differentiable and non-differentiable functions).

• the gradient plotter: which has a secant through two close points
on the graph move along the graph, simultaneously plotting the
gradient of the secant as a point, dynamically building up the
gradient function
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• the area calculator: to show how the area under the graph of a
function may be calculated as the area of a number of strips, or as
a cumulative area function

• the solution sketcher: to enable the user to construct one or more
solutions of a differential equation dy/dx=F(x,y) by drawing a
short line segment of gradient F(x,y) at any point (x,y) and
building up a solution by putting such segments end to end to
give an approximate solution curve (figure 3).

Figure 3 : The Solution Sketcher

• the three dimensional solution sketcher: to show simultaneous
differential equations dx/dt=f(x,y,t), dy/dt=g(x,y,t) follow the
same idea, with solution curves following the directions specified
by the equations

• the parametric function analyser, enabling a three-dimensional
view of parametric functions x=x(t), y=y(t) to be drawn, together
with their projections on t-x, t-y and x-y space and to draw an
approximate tangent vector and its components dt,dx,dy, to see
that formulae such as

dy
dx  = 

dy
dt   / 

dx
dt  

are just ratios of lengths of the components of the tangent vector
(figure 4).
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Figure 4 : The Parametric Function Analyser

All of these programs have been subsequently developed to allow extremely nasty

functions (such as extremely wrinkled graphs to represent non-differentiable

functions). Thus it is possible to investigate specific cases which are far more

complicated than mere polynomials or smooth combinations of standard functions

and give a much richer experience of why things can “go wrong” as well as

surprising cases where they “go right” (Mills & Tall 1989). It is now possible to

illustrate ideas that functions might be non-differentiable, or that the area function

for a continuous, nowhere differentiable function is differentiable, and many more

essential ideas that build experiences to give greater insight into analysis.

Computer software can provide a representation or model of the mathematical

phenomena, but not always an exact translation. (For instance, pictures are drawn

using finite pixels, so that straight lines do not normally look straight on a computer

screen.) However, these obvious inconsistencies may be regarded as an advantage,

not a hinderance. If the student can clearly see that the representation is not exact, it

is possible to discuss the reasons why, and to begin to build up richer mental

models.

The evidence from a number of studies so far (Tall 1986a, Blackett 1987, Thomas

1988) shows that the use of generic organizers in a context where the concepts are



Inconsistencies in Learning Calculus David Tall

– 13 –

introduced by the teacher, discussed with the pupils and then explored by the pupils

alone, suggests great advantages over traditional approaches.For instance Tall

(1986a) built a “cognitive approach to the calculus” using the magnification and

gradient drawing programs mentioned above. There was significant improvement in

the experimental students’ ability to sketch gradients of given graphs, and their

conceptualizations transferred to the more general case of the gradient and tangent of

a graph at a point where the function was given by different formulae on either side.

Such an approach does not eliminate cognitive conflict. How could it? It is part of

the human condition. But it does provide an open forum in which the conflict can be

brought to the fore and discussed dispassionately through shared phenomena on the

computer screen, instead of focussing on the personal hidden recesses of the pupil’s

mind. For instance, the difficulties that Vinner (1983) observed with the student’s

concept image of a tangent being a line which “touches a graph but does not cross

it” was attacked using a graph plotter to draw lines through close points on a curve,

producing a close approximation to a tangent. Zooming in close on the curve

showed some graphs were “locally straight” and the tangent and graph were

indistinguishable in the pixellated computer picture. Discussion of this point and

what happens at points of inflection, or at a “corner” on a graph led to a much more

flexible idea of a tangent and showed a significant change for the better (Tall 1987).

New conflicts arose – for instance the students using the computer were, naturally,

more likely to say that a tangent is a “line through two close points on a graph”

because this is the way the concept was approached using the computer. But such

concepts were more amenable to discussion and personal reconstruction by the

pupils.

A new approach using computers in this way will need a radical reform of the

curriculum. It applies at all levels of development. Much research, based on pre-

computer environments, may be in error because it occurred in a context which may

not pertain in future. For example, we teach young children about simple fractions

in terms of halving and quartering because this is within their physical and mental

capacity. But just because they may be physically incapable of dividing a cake into

seven equal pieces does not mean that they are mentally incapable of visualizing it

aided by appropriate software. A rich computer environment allowing children to

carry out their mental ideas may give the opportunity to circumvent some of the

trivializing introductions that may stunt future growth. We cannot make the
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complicated concepts more simple, but we can give far richer experiences that

enable them to be seen in a wider, and more powerful, context. Recent research

shows this to be a promising direction to follow (Tall & Thomas 1988).
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